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1 Abstract

By developing a Single Body Theory and using Euler’s method, about 200 000 meteors with assumptions
about their initial conditions (velocity, mass, zenith angle, density) were analysed. We simulated light
curves and determined their intensity in terms of meteoroids’ initial conditions. We also calculated the
height of maximum intensity in order to apply these functions to real data from observations and, by
getting information about their density, gaining insight into their origin.

2 Introduction

2.1 The concept of a meteor

Meteor showers are an atmospheric phenomena observable on the night sky, as a result of their light
traces. Meteoroids are particles of matter which, while traveling through interplanetary space, enter
Earth’s atmosphere due to the intersection of Earth’s and their orbit. That causes them to penetrate
Earth’s atmosphere and because of their collision with atmospheric particles, a process called ablation
takes place and causes the radiation of light. Performance of the light curve can tell us a lot about
meteor’s properties. Furthermore, if the mass ablating through atmosphere doesn’t burn down before
touching the Earth’s surface, we call the body a meteorite.

2.2 Structure of meteoroids

Meteoroids can originate from two different spacial bodies. Asteroids are one option for parental body of
meteor and they give meteors denser, heterogeneous composition because then their structure contains
silicates and metals such as iron or nickel. On the other hand, meteoroids can also originate from
comets which cause them having homogeneous, low density structure made from dust and ice. Their
structure greatly influences their emitted light, therefore from light curve’s properties and knowledge
about structure and density we can trace back parental bodies.

3 Model

We developed a phenomenological model that describes a single body’s interaction with the atmosphere
mainly using Newtonian concepts. Our theory connects the intensity of light emitted from the body with
physical parameters of the meteoroid. Later, we used this model to simulate meteor light curves. We
used several simplifying assumptions about both the body and the atmosphere.

3.1 Single Body Theory

For the theory, we assumed that our body is:

• rigid (it has constant density ρ )

• perfectly spherical (shape parameter is constant)

• interacting with the atmosphere which can be viewed as a collision

Furthermore, we neglected microscopical (except for the τ parameter’s calculation) and fluid dynamical
phenomena occurring in the interaction.
We had to describe three variables: the velocity (v) and how it changes over time (as the meteoroid
decelerates in the air), the mass (m) loss of the body (as a result of the process called ablation, see [1])
and the height (h) change, to complete the equation system (in this paper, we will use bold for these
variables, not because they are vectors but to emphasize that these are the meteor’s most important
variables).

3.1.1 Determining velocity

In the interaction of the air and the body, the meteoroid transfers momentum to the air (because of the
conservation of momentum), thus it decelerates. The amount of momentum transferred is given by:
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v

v dt

ρ_a

ρ

Figure 1: Our model of interaction

dp = −Γvdma,

where Γ is the drag coefficient of a sphere, dma is the mass of the cylinder in Figure 1 at a time instant
dt. dma can be calculated from geometric properties of the sphere:

dma = ρaA

(
m

ρ

) 2
3

vdt,

where A is the shape parameter of the sphere and ρa is the atmospheric density. Substituting dp =
mdv + dmv while neglecting dm yields the final equation for deceleration (also known as Whipple’s
equation):

v̇ = −ΓAm− 1
3 ρ−

2
3 ρav

2

3.1.2 Determining mass loss

The meteoroid is also gaining energy because of the collision and the conservation of energy. This causes
it to raise its temperature which results in the emission of light and the decrease of mass. The following
equation describes this energy transfer:

dm · Z = −Λ · dEkin,

where Z represents the specific heat (the amount of latent heat the body gains) and Λ represents the
heat transfer coefficient, the amount of kinetic energy radiated away. The value of these parameters are
determined from experiment. Ekin (kinetic energy) can be calculated from:

dEkin =
1

2
dmv2,

where dm = dma. Substituting yields the equation of ablation:

ṁ = −ΛA

2Z
m

2
3 ρ−

2
3 ρav

3

3.1.3 Determining height change

The change in height (ḣ) can be calculated as the vertical projection of velocity:

ḣ = −v cos(z)

In the equation above, z represents the angle of penetration (also called zenith angle) which is the angle
between the vertical axis and the initial velocity vector.
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3.2 Simple Atmospheric Model

To complete Single Body Theory, we needed to find how atmospheric density changes over height. For
this, we derived the simple atmospheric model (also known as the isothermal atmospheric model).

For this, we postulated that the atmosphere :

• is made out of an ideal gas with constant molar mass

• is isothermal

• has uniform gravitational attraction

• is behaving like a plan parallel area of air.

To arrive at the density function, we had to determine the pressure function, as these properties are
related by the ideal gas law. To find the pressure, we used that an infinitely thin layer of air is in
equilibrium, so the pressure coming from the bottom cancels out the pressure of the top layer. As
a result, we obtained the following equation of density (with the usual constants, ρ0 representing the
surface density, and M representing air’s molar mass):

ρa = ρ0e
−Mg

RT
h

The proof is left to the reader as an exercise.

3.3 Light curve modeling

Since the light intensity is the emitted energy through visible light, we calculated it from the change in
kinetic energy (1

2dm · v2):

I = τ · dEkin

dt
= τ

1

2
v2 dm

dt

The τ parameter’s value is determined from microscopical analysis as well as numerical methods, but
discussion of it goes beyond this paper’s scope. More information can be found in the attached C++
code. The final equation for light intensity:

I = −1

2
τṁv2
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Figure 2: An example of a light curve
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4 Simulation

Analyzing single light curves are useful to study the phenomenon of a meteor, since they describe the
intensity of the light resulting from the ablation of the mass. However, simulating numerous light
curves from a wide range of different types of meteoroids could give us precious information beyond the
phenomenon itself. It indeed allowed us to have an insight into the structure of observed meteoroids for
which we have some data, by calculating their density as a function of measurable parameters (height,
velocity, zenith angle and apparent magnitude of the resulting meteor).

4.1 Distinct meteors

For making the density calculation easier, we focused on the point of highest intensity (Imax) of the
meteor. We named the height where Imax occurs Hmax. To get functions for Imax and Hmax which
were only dependent on the measurable variables and on the density of the meteoroid, we first had to
simulate the intensity and height functions of meteoroids differing in their initial velocity, initial mass,
zenith angle and density.

We generated about 200,000 meteoroids which could tangibly intercept the Earth’s atmosphere, by setting
a realistic range for each individual variable. Thus, the mass has been constrained between 10−8 and
10−1.5 kg, the zenith angle from 0◦ to 80◦, the density of the meteoroid from 300 to 3, 100 kg

m3 and the
velocity from 11, 200 to 72, 800m

s . These last two values are derived from cosmic speeds. The minimum
velocity is the second cosmic1 speed with respect to Earth, while the second one is the second cosmic
speed with respect to the Sun added to Earth’s velocity around the Sun.

4.2 Our simulation program

To calculate Imax and Hmax of the resulting meteors, we first had to solve the equations of the Single
Body Theory for each of their meteoroid. Since they’re ordinary differential equations, we used Euler
numerical approximation method. The principle of this iterative process is based on the concept of the
derivative. Knowing initial values, any point of a function can be calculated as a function of the previous
term (f represents the functional relation of y and ẏ):

yn+1 = yn + dtf(yn)

The obtained recurrence relations have then been written in a C++ program. They have been simulta-
neously solved inside four nested for-loops, which generated the distinct meteors. Imax and Hmax has
thereafter been calculated for each meteoroid. For more information, see the attached code.

4.3 Intensity and height functions

With the resulting data, we then were able to calculate the coefficients and exponents of the Imax and
Hmax functions by fitting them to the obtained values (multiple regression analysis).

Imax = Kmk1ρk2vk3 cosk4(z)

Hmax = Lml1ρl2vl3 cosl4(z)

We first estimated Imax since the Hmax function depends on the apparent magnitude Mapp which is
proportional to the intensity of the light in the following way:

Mapp = −14.18 − 2.5 log
683

4π1010
I

After fitting Hmax function, we just had to rearrange it, to isolate the meteoroid’s density as a function
of measurable parameters.

ρ = 10
1
l3

[Hmax−log(L)−l1 logMapp−l2 log(v)−l4 log(cos(z))]

1Second cosmic speed is the speed which a body needs to have in order to escape the solar system from a given object.
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5 Application

5.1 Obtaining observational data

In order to check our model’s validity, we obtained observational data about atmospheric and cometary
meteor showers from [2]. This paper reports on 4 kinds of shower meteors: Leonids, Orionids, Perseids
and Geminids. These types got their name after the position with respect to the night sky’s stars. The
measured properties we used were the height of reaching maximum light intensity (Hmax), apparent
brightness (Mapp, which can be expressed in terms of light intensity), initial velocity (vinit) and zenith
angle of penetration (z). The following table shows the measurements:

Shower Meteors Hmax[km] Mapp[mags] z(◦) vinit[kms
−1]

Leonids 106.9 ± 3.8 −0.3 ± 3.4 44.2 ± 1.7 70.7
Orionids 106.7 ± 2.1 −1.0± 3.8 42.7 ± 1.0 66.4
Perseids 104.4 ± 2.9 −2.1± 4.2 42.7 ± 0.9 59.6

Geminids 91.7 ± 3.4 −0.3± 4.6 32.2 ± 2.0 34.4

5.2 Density calculations

The formula for meteor density in terms of observable parameters is determined from the simulation
data using a multiple regression fit (the fit yielded the L, li parameters from the previous section):

Hmax = log(L) + l1 log(Mapp) + l2 log(v) + l3 log(ρm) + l4 log(cos(z))

ρ = 10
1
l3

[Hmax−log(L)−l1Mapp−l2 log(v)−l4 log(cos(z))]

5.2.1 Origin of meteors

We can infer that the asteroidal meteoroids have a density larger than 1000 kgm−3 while the density of
cometary meteoroids are less than that due to the structural differences of the two kinds. Our calculated
densities for the meteor showers:

Shower Meteors Density kg
m3 Likely origin

Leonids 0.61672 Comet
Orionids 0.36578 Comet
Perseids 0.26926 Comet

Geminids 1.48109 Asteroid

It is clear that Geminid meteors have a higher density than that of the other types. Thus we can deduce
that Geminids originate from asteroids while Leonids, Orionids, Perseids have a cometary origin.

5.3 Error factors

In our project, errors arise from various factors. First of all, systematic errors come from our model of
the atmospheric interaction of a single body, as we used several simplifying assumptions noted in Section
3.1. Another error factor is that the parameters mentioned in Section 3.1 (such as Λ,Γ...) are not actual
constant, but rather dependent on other parameters. These errors’ magnitude could be determined from
a more elaborate simulation.

The measurements themselves have errors as indicated in the previous section. Furthermore, we had
two sources of numerical errors: one coming from Euler’s method of approximating the equations of
interaction and the other one coming from the error of multiple regression fit.

6 Conclusion

By using physical laws and simplifying assumptions, we have consequently been able to presume the origin
of meteor showers meteoroids for which data have been measured. The final result of our project was ac-
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tually a program which calculated the density of any meteoroid as a function of its measured parameters.

Even if the ratio of the cometary/asteroidal meteoroids densities are as expected, the actual values
we obtained are off by a factor of 1000. This error can be due to a unit conversion mistake or some
other miscalculation (in the regression analysis for example). Through this multi-subject project, we
therefore learned and deepened our knowledge in the meteor phenomenon, as well as in general physics,
mathematics and programming.
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